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Tethered membranes far from equilibrium: Buckling dynamics

Dorel Moldovan1 and Leonardo Golubovic2,*
1Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

2Department of Physics, Harvard University, Cambridge, Massachusetts 02138
~Received 21 April 1999!

We study the dynamics of the classical Euler buckling of compressed solid membranes. We relate the
membrane buckling dynamics to phase ordering phenomena. Membranes develop a wavelike pattern whose
wavelength grows, via coarsening, as a power of time. We find that evolving membranes are similar to growing
surfaces~‘‘growing interfaces’’! whose transverse width grows as a power of time. The morphology of the
evolving membranes is characterized by the presence of a network of growing ridges where the elastic energy
is mostly localized. We used this fact to develop a scaling theory of the buckling dynamics that gives analytic
estimates of the coarsening exponents. Our findings show that the membrane buckling dynamics is character-
ized by a distinct scaling behavior not found in other coarsening phenomena.@S1063-651X~99!04510-9#

PACS number~s!: 05.70.Ln, 82.20.Mj, 46.32.1x, 05.40.2a
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I. INTRODUCTION

Polymerized, tethered membranes, generalizing flex
polymers, have attracted much interest in recent years. T
thermal equilibriumproperties have been studied recen
numerically @1–5#, experimentally @6,7#, and analytically
@8–10#. In a recent Letter@11# we addressed the problem o
far-from-equilibrium buckling dynamics of tethered mem
branes. The present work is devoted to the study of the bu
ling dynamics of tethered membranes outlined before bri
in Ref. @11#. Here we address the question of thefar-from-
equilibrium buckling dynamics of such membranes~thin
elastic sheets!, moving in a viscous medium. Mechanical in
stabilities of elastic manifolds pose a rich spectrum of pr
lems that are still largely unresolved despite great eff
Classical examples are buckling instabilities of thin she
@12#, which are of great importance in safety design a
development of energy absorbing structures@13#. There are
large varieties of phenomena involving deformations of t
elastic sheets~membranes!. These, potentially, span a wid
range of scales, from phospholipid membranes@14# and thin
sheets of graphite oxide in aqueous suspensions@7# to the
raglike structures found in molybdenum disulphite@15# and
spectrin skeleton of red blood cell membranes@16#. A good
example is the buckling instability of polymerized monola
ers of insoluble amphiphiles adsorbed at the air-water in
face, studied by Bordieuet al., and more recently by Saint
Jalmes and Gallet@17#. Buckling of a membrane can b
induced in a variety of ways, for example, simply by app
ing a compressional lateral strain. Another related class
phenomena is the buckling due to internal strains, wh
plays an important role in heteroepitaxial growth, such
for example, the growth of SiGe multilayers on Si substra
@18#.

In practice, strains causing buckling are frequently
thermal origin @18#. Membranes immersed in fluids ma
buckle if the temperature of the fluid is raised and the bou

*Permanent address: Physics Department, West Virginia Uni
sity, Morgantown, WV 26506.
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ary of the membrane is held fixed. The temperature ju
would expand a membrane with a free boundary. It th
effectively induces auniform compressive straine in the
membrane with a fixed boundary. If«.«c;L22, such a
thermally strained membrane will buckle;L is the linear di-
mension of the membrane.

Historically, Euler’s buckling instability is the very firs
example for bifurcation phenomena and the paradigm
subsequent theories of phase transitions@12#. Still, the dy-
namics of this phenomenon has been addressed in depth
recently, for the case of tethered membranes@11#, and flex-
ible chains of molecules@19#. In itself, buckling involves a
spontaneous symmetry breaking. Thus, a compressed m
brane may buckle either up or down~breaking ofZ2 , Ising-
type symmetry!. Therefore, buckling is a practically interes
ing analog of the phase ordering phenomena. In this pa
we address extensively the fundamentals of buckling dyn
ics, that is, we studyhow initially compressed membrane
reach the final buckled configuration at long times. We e
cidate deep relationships of the membrane buckling dyn
ics to phase ordering processes@20–22#, such as the mound
growth recently observed in molecular beam epitaxy@23–
25#. We find that membrane buckling dynamics can be en
sioned as a phase ordering process in which membrane s
plays the role of the order parameter. We show that me
brane buckling dynamics forms a distinct class of the ph
ordering processes characterized by a scaling behavior
found before in other coarsening phenomena@20–25#. Mem-
brane transverse displacements develop a wavelike patte
two dimensions with a wavelength that grows, via a coa
ening process, as a power of time. Evolving membranes
like growing surfaces~‘‘growing interfaces’’! whose trans-
verse width grows as a power of time. The morphology
evolving membranes is characterized by the presence
network of growing ridges where the elastic energy is mos
concentrated. We used this fact to develop a scaling the
of the buckling dynamics that gives analytic estimates of
coarsening exponents.

The balance of our paper is as follows. We discuss
model for the tethered membrane in Sec. II. In Sec. III, o
molecular-dynamics~MD! simulations results for the mem
r-
4377 © 1999 The American Physical Society
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4378 PRE 60DOREL MOLDOVAN AND LEONARDO GOLUBOVIC
brane buckling dynamics are presented. A scaling theor
the buckling dynamics based on the evidence of the e
tence of high energy concentration regions, ‘‘ridges,’’ acro
the surface of the membrane is proposed in Sec. IV.
conclude in Sec. V where we summarize our findings a
possible future directions of investigation. In the Append
we generalize the scaling analysis of Sec. IV to discuss
effects of long range viscous forces on membrane buck
dynamics~so-called Zimm dynamics!.

II. THE MODEL

A tethered membrane is a system of particles connecte
form a triangular two-dimensional~2D! mesh embedded in
three dimensions. Each particle is labeled by an internal
crete coordinatex5(x1 ,x2) denoting its position on the
mesh. Its actual position in the 3D space is given by
three-dimensional vectorrW(x1 ,x2). The particles are ar
ranged in a triangular array, interacting with their near
neighbors by a simple Gaussian spring potential. The m
brane’s bending energy is modeled by a ferromagnetic
interaction between the normals to the nearest-neigh
‘‘plaquettes’’ @10#. Thus, the net elastic potential energy
the membrane reads

U5 (
^xx8&

1
2 ~ urWx2rWx8u2r 0!21k (

^ab&
~12nW a•nW b!, ~1!

wherex andx8 label the nodes andr 051.0 is the equilibrium
bond ~‘‘spring’’ ! length ~as usual,̂ xx8& signifies the bond
between nearest neighborsx andx8). The subscriptsa andb
label the neighboring faces~triangles! of the surface,nW a is
the unit normal vector to the facea, k is the bending rigidity,
and ^ab& signifies the nearest-neighbor plaquettes.

We have studied membranes that are hexagonal in s
of linear dimensions up toL5500 ~L is the number of par-
ticles on the largest diagonal!, that contain up to 186 751
particles~see Fig. 1!. To minimize the finite size effects, w
have done all the calculations~spatial averages! of physical
quantities on a subset of the large membrane. The subse
used to calculate the spatial averages was a hexagonal re
of size Lsm5250 ~a subset withN545 019 particles! cen-
tered in the middle of the large membrane.

III. MOLECULAR-DYNAMICS SIMULATIONS
OF MEMBRANE BUCKLING DYNAMICS

Here we report the results of large-scale molecu
dynamics simulations of tethered membranes, initially in
precompressed state~see Fig. 1!. The dynamical model stud
ied here by MD is the standard overdamped Rouse dyn
ics,

g
drWx

dt
52

]U

]rWx
1hW x~ t !, ~2!

of the tethered membrane. HererWx(t) is the position of the
particle at timet,g is the viscous friction coefficient, an
hW x(t) is thermal noise. The membrane is initially in a fl
configuration with all its bonds compressed by« ~e.g., «
50.1 for the simulations discussed here! and with fixed
boundary~‘‘frame’’ ! of hexagonal shape~see Fig. 1!. Natu-
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rally, the frame linear size is 10% smaller than that of a fu
relaxed membrane~with zero elastic energy!. We focus here
on the membrane dynamics without thermal noise~‘‘zero-
temperature’’ dynamics!, i.e., we sethW x(t)50 in Eq. ~2!.
The only randomness used here was small initial rand
transverse displacements around initially compressed
therefore, unstable flat configurations of the membrane~just
to enable the membrane to start moving!.

Figure 1 shows snapshots of configurations that disp
the time evolution of theN5186 751 particle membrane a
timest52000, 6000, and 18 000. Each configuration is be
viewed from two perspectives; along thez axis for the whole
membrane~the left-hand column!, and along a direction
making an angle with thez axis, to magnify a smaller mem
brane portion~the right-hand column!. The membrane is ini-
tially in the x-y plane. As can be seen from Fig. 1, bucklin
instability, due to negative internal strains, amplifies tra
verse displacements and produces a chaotic dynamics. M
festly, membrane transverse displacementsr T(x,t), along
the z axis, develop an evolving wavelike pattern ofmounds
characterized by a growing lateral length scalel(t) ~‘‘wave-
length’’!. Notably, membrane morphology is characteriz
by the presence of a network of highly curved regions,ridges
that bound more flat regions, moundfacetswith linear size
;l(t). Associated with the growth of the mound lateral si
l(t) is a growth of the membrane’s transverse spreadw(t)

FIG. 1. Snapshot of the evolving membrane at timest52000,
6000, and 18 000. The membrane is initially in thex-y plane. The
membrane configurations are being viewed from two perspecti
along thez axis, the left column that depicts the whole membra
and along a direction making an angle with thez axis in order to
magnify a 6% selection taken from the midsection of the wh
membrane~the right column!. The left column perspective make
visible only molecular displacements parallel to thex-y plane.
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~‘‘width’’ ! along thez axis ~see Fig. 1!. w(t) can be thought
of as the typical height of a mound. We quantify it
@w(t)#25Š@r T(x,t)2^r T&#2

‹. Here and in the following,̂ &
stands for spatial average, defined for any quantityA(x,t) as
^A(x,t)&5(xA(x,t)/N.

In order to quantitatively characterize the surface m
phology, we have calculated, apart from the membrane w
w(t), the height-height correlation function:

Khh~r ,t !5^r T8~x,t !r T8~x1r ,t !&, ~3!

wherer T8(x,t)5r T(x,t)2^r T& is the relative transverse dis
placement with respect to the average height of the m
brane~in these simulationŝr T&'0 at all times!. This corre-
lation function ~see Fig. 2! has an oscillatory characte
reflecting wavelike membrane patterns in Fig. 1. We used
height-height correlation function to find the membra
wavelength~mound lateral size! l(t), by identifying it with
the position of the first zero crossing ofKhh(r ,t), see Fig. 2
@19–25#. We thus find that the membrane transverse wi
w(t) and wavelengthl(t) both grow as powers of time,

w~ t !;tb, l~ t !;tnc, ~4!

with the exponentsb50.2960.01 andnc50.2860.01. This
is documented in Figs. 3 and 4, which show the width a
wavelength as functions of time, on both linear and logar
mic scales. Moreover, as documented in the inset to Fig
height-height correlation functions obtained at differe
times collapse into a single scaling functiony5c(s); here
y5Khh(r ,t)/Khh(r 50,t)5Khh(r ,t)/w2, and s5r /l(t).
Thus, at long times,

FIG. 2. The height-height correlation functionsKhh(r ,t) versus
r for four values of the timet52000, 6000, 10 000, and 18 000. Th
inset shows the collapse of the correlation functions into a sin
curve y5c(x). Here y5Khh(r ,t)/Khh(r 50,t) and x5r /l(t),
wherel(t) is the first zero ofKhh(r ,t).
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Khh~r ,t !5w2~ t !cS r

l~ t ! D , ~5!

where c(s) is a scaling function satisfyingc(0)51 and
c(1)50.

As w andl correspond, respectively, to the typical mou
height and mound lateral size, the ratiow/l corresponds to
the average mound slope. Due to the fact that the two ex
nentsb andnc are essentially equal, we see that the aver

le

FIG. 3. The membrane transverse widthw(t) versus time.w(t)
measures the height of the mounds comprising the membrane
file. The log-log plot gives the scalingw(t);t0.29.

FIG. 4. The time evolution of the first zero of the height-heig
correlation functionKhh(r ,t), calledl(t), the ‘‘wavelength’’ of the
membrane wavelike pattern.l(t) measures the lateral size of th
mounds comprising the membrane profile. The log-log plot giv
the scalingl(t);t0.28.
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slope of the mounds stabilizes to a constant value at l
times. To rationalize this, consider the average value of thz
component of the unit normal vector to the surface,^nz&.
From simple geometrical considerations, we have the follo
ing estimate:

^nz&5
AD0

AD
5

r 0
2~12«!2

l 2~ t !
——→

t→`

r 0
2~12«!2

r 0
2 5~12«!2,

~6!

whereAD0 is the area of an equilateral triangle plaquette
the initial (t50) horizontal position with all the bonds pre
compressed by«, whereasAD is the area of the sam
plaquette tilted at timet when the bond length isl (t). At
long times,l (t) approachesr 0 ~the relaxed bond length! and
the mound slopew(t)/l(t)'A12^nz&

2/^nz& stabilizes to a
value determined by the externally imposed strain«. Equa-
tion ~6! yields

w~ t !

l~ t !
;A« ~7!

for «!1. Figure 5 from our simulations shows the time ev
lution of ^nz&. We can see that indeed it stabilizes at lo
times at the valuênz&(t5`)>0.810. In fact, this value is in
perfect agreement with Eq.~6!, with «50.1, as used in ou
simulations. From our simulations we find@^nz&(t)2^nz&(t
5`)#;tz with z520.5060.01 ~see Fig. 5!.

We obtain additional insight into the membrane scal
behavior by considering the decay of the elastic poten
energy, see Fig. 6. The net elastic energyU is the sum of the
compressional energyUcom @the first term on the right-hand
side of Eq.~1!# and the bending energyUbend @the second
term on the right-hand side of Eq.~1!#. We see that at long
times,

FIG. 5. The time relaxation of the averagez component of the
normal unit vector to the surface of the membrane^nz&. The log-log
plot gives the scaling @^nz&(t)2^nz&(t5`)#;t20.50 @where
^nz&(t5`)50.810#.
g

-

-

l

Ucom~ t !;
1

td8
, ~8!

with d850.4760.01, whereas

Ubend~ t !;
1

td9
, ~9!

with d950.4560.01, see Fig. 6. Numerically, the scalin
exponentsd8 andd9 are nearly equal. We note that the rat
Ubend/Ucom is about 5 at the longest time of the simulatio
The total elastic potential energyU(t)5Ubend(t)1Ucom(t)
decays with an exponent close tod9'd8. This is docu-
mented in Fig. 6, where we find

U~ t !;
1

td , ~10!

with d50.4660.01.

IV. SCALING THEORY
OF MEMBRANE BUCKLING DYNAMICS

In this section we propose a scaling theory of membra
buckling dynamics. It is similar in spirit to Bray’s recen
scaling theory of coarsening processes such as spinoda
composition@20–22#. This approach relates the dynamics
the coarsening processes in dissipative systems to the ra
extinction of energy rich regions, such as domain walls
Ising ferromagnets. Such energy rich configurations, sim
to domain walls, are present also in our case, in the form
elliptically shaped ridges of lengthl(t) which bound more
flat regions, facets with area'l2(t), as noted in Sec. III.
This is further documented in Fig. 7 from our simulation
which depicts bending energy density distribution over
surface of the membrane at timet56000 for a small portion
(50350) of the membrane. Notably, the elastic energy

FIG. 6. The time evolution of membrane elastic potential en
gies ~PE!: total potential energyU5Ubend1Ucom, bending energy
Ubend, and compressional energyUcom, per particle versus time.
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PRE 60 4381TETHERED MEMBRANES FAR FROM EQUILIBRIUM: . . .
localized into a relatively small portion of the membra
area occupied by a network of elliptically shaped ridges
length l(t) ~see Fig. 7!. A ‘‘unit cell’’ of this random net-
work has the area'l2(t) coinciding with the typical area o
a facet.

As there is of the order one ridge per area'l2(t), the
average elastic energy per particle, i.e., energy per unit a
is

u5
U ridge~l!

l2 , ~11!

whereU ridge(l) is the energy of a single ridge of lengthl.
For ridges of deformed membranes, it has been recently
gested that

U ridge~l!;ln, ~12!

with n5 1
3 @26,27#. Thus, by Eq.~11!,

u;
1

l22n . ~13!

So, the decay of the elastic energy density from simulati
in Fig. 7, withu;t2d, is related to the growth ofl(t) by Eq.
~13!. As u;t2d, we find, by Eq.~13!,

l;tnc, ~14!

with

nc5
d

22n
. ~15!

To proceed further, we use the energy dissipation relatio

1

g

dU

dt
52 (

x51

N S ]rWx

]t D 2

, ~16!

FIG. 7. The elastic bending energy density for a small portion
the membrane (50350) at time t56000. Here, ũbend(x)
5ubend(x)/(ubend)max, where (ubend)max is the maximum value of
the local bending energy density, i.e., bending energy per par
ubend(x). Notably, the elastic energy is localized in elliptical
shaped ridges~bright regions!, whereas larger dark areas are nea
flat facets characterized by low elastic energy density.
f

a,

g-

s

implied by the equation of motion~2!. In terms of the energy
per particleu5U/N, Eq. ~16! reads

1

g

du

dt
52 K S ]rW

]t D
2L . ~17!

By using Eq.~17! with u;t2d, and]r /]t;w/t;tb21, we
obtain the scaling relationt2d21;t2(b21), i.e.,

d1152~12b!. ~18!

Finally, as the mound slopew(t)/l(t) saturates to a constan
value at long timest, one hasw(t);l(t), i.e., tb;tnc, and,
thus,

b5nc . ~19!

Equations~15!, ~18!, and ~19! form the basic set of scaling
relations in our analysis. By using them, we can express
scaling indicesb, nc , and d in terms of a single scaling
index n. By combining Eqs.~15!, ~18!, and ~19!, we thus
find

d5
22n

42n
~Rouse dynamics! ~20!

and

b5nc5
1

42n
~Rouse dynamics!. ~21!

Equations~20! and ~21! are the fundamental results of ou
scaling analysis. Withn5 1

3 , as suggested in@26,27#, our
equations~20! and ~21! yield

d5 5
11 >0.45, b5nc5 3

11 >0.27 ~Rouse dynamics!
~22!

in good agreement with our simulation results of Sec. III.
Rouse dynamics does not incorporate the long range

fects of hydrodynamic backflows of fluid media on movin
membranes, so-called Zimm effects@28#. These effects can
be readily included into our scaling analysis. We find for t
Zimm dynamics,

d5
22n

32n
~Zimm dynamics! ~23!

and

b5nc5
1

32n
~Zimm dynamics!. ~24!

The derivation of Eqs.~23! and ~24! is presented in the Ap-
pendix. Withn5 1

3 @26#, we thus have

d5 5
8 , b5nc5 3

8 ~Zimm dynamics!. ~25!

Overall, the analysis of this section shows that basic f
tures of the buckling dynamics can be understood by inv
ing energetics of ridges and applying a scaling appro
similar to that used to describe the phase ordering in m
netic systems@22#. Our analysis shows that the buckling d
namics constitutes a new class of coarsening phenomena

f
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4382 PRE 60DOREL MOLDOVAN AND LEONARDO GOLUBOVIC
hibiting novel scaling behavior characterized by expone
@such as those in Eqs.~22! and ~25!# not found before in
magnetic systems or elsewhere@20–25#.

V. CONCLUSIONS

In summary, here we have studied the fundamentals of
membrane buckling dynamics, that is, how an initially fl
membrane under external strain imposed by fixed bounda
reaches the equilibrium buckled configuration at long tim
We find that evolving membranes develop growing wavel
patterns. We have revealed here that the dynamics of b
ling is similar in nature to phase ordering processes suc
spinodal decomposition. Membrane buckling dynamics
analogous to phase ordering processes such as the grow
ordered domains in magnetic systems below the critical t
perature. Membranes develop nearly flat growing doma
~facets! whose slope plays a role similar to that of an ord
parameter in phase ordering processes. Membranes ev
via a stochastic coarsening process that has associated w
power law growth of length scales that characterize
evolving membrane. We find that the coarsening expone
for the transverse membrane widthw(t);tb and for the
length scale of the facetsl(t);tnc are nearly equal. Such
growth of w(t), with b>nc , is strikingly similar to the in-
terfacial coarsening process recently found to occur in m
lecular beam epitaxy~so-called pyramidal or mound growt
@23–25#!. The morphology of the evolving membranes
characterized by the presence of a network of growing rid
where the elastic energy is mostly localized. We used
fact to develop a scaling theory of the buckling dynam
that gives analytic estimates of the coarsening expone
These estimates are in good agreement with our simula
results. Finally, our results show that the membrane buck
dynamics constitutes a new class of coarsening phenom
characterized by novel scaling behaviors, such as thos
Eqs. ~22! and ~25!, not found in magnetic systems or els
where@20–25#.

We end by stressing some features of the present s
and anticipating directions for future studies. First of all, w
emphasize that the stochastic nature of the membrane b
ling dynamics discussed in this work is not due to therm
noise, which was, in fact, switched off in the simulatio
presented here. In fact, interestingly, the stochasticity is p
duced dynamically by the nonlinear nature of the system
by the presence of many degrees of freedom. Similar
namical stochasticity occurs in phase ordering proces
e.g., in spinodal decomposition in time-dependent Ginzbu
Landau models@22#. Moreover, in these systems, therm
noise was found to be typically irrelevant for the coarsen
process, i.e., the presence of a white noise does not a
coarsening exponents, such asnc . It would be interesting to
investigate if this remains true in the membrane case
~especially in view of the anomalous membrane elastic
revealed by Nelson and Peliti@9#!. Another extension of the
present study would be to investigate buckling dynamics
membranes adsorbed at fluid interfaces. These system
generalizations of those discussed here. For adsorbed m
branes, in addition to Zimm effects~Sec. IV and Appendix!,
one must include membrane spontaneous curvature as
as hydrostatic forces that yield a saturation of the membr
ts

e
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wavelengthl(t) at long times. Such a study of adsorbe
membranes would be relevant for understanding dynam
aspects of the buckling of polymerized surfactant monol
ers adsorbed at fluid interfaces, investigated in recent exp
ments @17#. Other possible extensions of the present wo
could be to study the dynamics of buckling with noexternal
friction mechanism present. Indeed, though many appl
tions deal with membranes embedded in fluid media
would also be interesting to study buckling dynamics in t
absence of any external friction, e.g., the Hamiltonian bu
ling dynamics of the membrane, or phenomenological m
els incorporatinginternal friction mechanisms@30#, which
may be more relevant for the buckling of thin sheets in a

Finally, various other modes of applying the bucklin
strain may be investigated. Our present study dealt w
membranes evolving under a constant external strain
posed by keeping the boundaries of the membrane fi
~fixed frame!. The membrane is thus initially under a un
form compressive strain that relaxes during the subseq
buckling dynamics. A natural extension of the present stu
is to investigate the case with initially relaxed membran
under an external strain which is gradually increased~i.e., the
frame size is decreased! to the final value. The resulting
membrane behavior will certainly depend on how the ext
nal strain is increased and extensive future studies sh
address many different possible ways of loading the buck
strain.

ACKNOWLEDGMENTS

We thank Andrew Karwowski, Arnoud Saint-Jalme
Charles Knobler, and James P. Sethna for discussions.
work was supported by Mylan Laboratories, Inc. and
NSF/WV EPSCoR. The simulations were performed on
CM-5 parallel computer at West Virginia University.

APPENDIX

In this appendix we generalize the scaling analysis of S
IV to discuss the effects of long range viscous forces on
membrane buckling dynamics. For this purpose we cons
a more general membrane dynamics of the form

m
]2rW~x,t !

]t2 52(
x8

g~x2x8!
]rW~x8,t !

]t
2

]U

]rW~x,t !
.

~A1!

Here m is the mass of a membrane molecule, whereas
first term on the right-hand side of Eq.~A1! is a nonlocal
viscous force. Form50 and g(x2x8)5gdx,x8 , Eq. ~A1!
reduces to the standard Rouse dynamics disccussed in p
ous sections. Here we discuss the effects of a long ran
viscous kernelg(x2x8), decaying as a power law for larg
ux2x8u. By multiplying Eq.~A1! by ]rW(x,t)/]t5v(x,t) and
summing overx, one obtains the energy dissipation equati

d

dt
@K1U#52Pdiss, ~A2!
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whereK5((m/2)v2(x,t) is the total kinetic energy of the
membrane,U is the elastic potential energy of the membra
given by Eq.~1!, and Pdiss is the power dissipated by th
viscous friction,

Pdiss51(
x

(
x8

g~x2x8!v~x,t !v~x8,t !. ~A3!

By Eqs. ~A2! and ~A3!, for a large membrane ofN mol-
ecules, one has

d

dt
@k1u#52pdiss, ~A4!

where k5K/N5(m/2)^v2(x,t)& and u5U/N are, respec-
tively, kinetic and potential energy per membrane molecu
whereaspdiss signifies the viscous friction power per mo
ecule,

pdiss5
Pdiss

N
5(

r
g~r !Kvv~r !. ~A5!

Here

Kvv~r !5^v~x1r !v~x!& ~A6!

is the velocity correlation function.pdiss in Eq. ~A5! can be
represented as

pdiss5E d2q

~2p!2 K̃vv~q!g̃~q!, ~A7!

where we introduce the Fourier transform, defined in
usual way „i.e., for any quantity A(x) we have
Ã(q)5(xA(x)e2 iqx, A(x)5(1/N)(qÃ(q)eiqx5*@d2q/
(2p)2#Ã(q)eiqx

…. In the spirit of Eq. ~5! of Sec. III, we
consider the velocity correlation function of the form

Kvv~r !5Kvv~0! f S r

l D , ~A8!

f (s) is a scaling function@ f (0)51#. Here Kvv(0)5^v2&
5^(]r /]t)2&'(w/t)2, as in Sec. IV. In terms of Fourie
transform, one easily finds, by Eq.~A8!,

K̃vv~q!5l2S w

t D 2

f̃ ~ql!. ~A9!

To proceed further, we consider the viscous friction kern
g(r ) whose Fourier transform has a power law form
ev

sk
,

e

ls

g̃~q!;uqua, ~A10!

wherea is a positive exponent. Of physical interest are t
cases~i! Rouse dynamics, for whicha50 andg(r );d r ,0 ,
and~ii ! Zimm dynamics, for whicha51, see Refs.@28,29#.
By using Eqs.~A7! and~A9! with g̃(q) as in Eq.~A10!, it is
straightforward to show that

pdiss5const3S w

t D 2 1

la . ~A11!

For the buckling dynamics withw;tb andl;tnc, we find,
by Eq. ~A11!,

pdiss~ t !;t22~12b!2nca, ~A12!

for the relaxation of dissipation power on the right-hand s
of Eq. ~A4!. The left-hand side of Eq.~A4!, (d/dt)(k1u),
must decay with the same power law as in Eq.~A12!. As in
Sec. III, we write down the decay of the elastic energy in
form u;t2d. The decay of the kinetic energy goes
k5(m/2)^v2&5(m/2)^(]r /]t)2&5(m/2)(w/t)2;t22(12b).
Let us assume thatd,2(12b). Then, at long times,

d

dt
~k1u!'

d

dt
u;t2d21. ~A13!

By Eqs.~A13!, ~A12!, and~A4!, we thus obtain the scaling
relation

d1152~12b!1nca, ~A14!

which reduces to Eq.~18! of Sec. IV for the case of the
Rouse dynamics (a50). Equation~A14! can be combined
with the equationsnc5b, andd5nc(22n) of Sec. IV @see
Eqs.~19! and ~15!# to obtain

nc5b5
1

42n2a
~A15!

and

d5
22n

42n2a
. ~A16!

For the casea50, the exponents in Eqs.~A15! and ~A16!
reduce to the scaling exponents for the Rouse dynamics
found in Sec. IV@see Eqs.~20!–~22!#. For a51, the expo-
nents in Eqs.~A15! and~A16! reduce to the Zimm dynamic
exponents anticipated in Eqs.~23!–~25! of Sec. IV. For both
of these values ofa, the above presumed inequalityd
,2(12b) ~i.e., u@k at long times! is satisfied.
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