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Tethered membranes far from equilibrium: Buckling dynamics
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We study the dynamics of the classical Euler buckling of compressed solid membranes. We relate the
membrane buckling dynamics to phase ordering phenomena. Membranes develop a wavelike pattern whose
wavelength grows, via coarsening, as a power of time. We find that evolving membranes are similar to growing
surfaces(“‘growing interfaces”) whose transverse width grows as a power of time. The morphology of the
evolving membranes is characterized by the presence of a network of growing ridges where the elastic energy
is mostly localized. We used this fact to develop a scaling theory of the buckling dynamics that gives analytic
estimates of the coarsening exponents. Our findings show that the membrane buckling dynamics is character-
ized by a distinct scaling behavior not found in other coarsening phenorf&h@63-651X%99)04510-9

PACS numbgs): 05.70.Ln, 82.20.Mj, 46.3%:x, 05.40—a

[. INTRODUCTION ary of the membrane is held fixed. The temperature jump
would expand a membrane with a free boundary. It thus
Polymerized, tethered membranes, generalizing flexibleffectively induces auniform compressive straire in the
polymers, have attracted much interest in recent years. Theinembrane with a fixed boundary. ¥>e.~L "2, such a
thermal equilibriumproperties have been studied recentlythermally strained membrane will buckle;is the linear di-
numerically [1-5], experimentally[6,7], and analytically mension of the membrane.
[8-10Q. In a recent Lettef11] we addressed the problem of  Historically, Euler's buckling instability is the very first
far-from-equilibrium buckling dynamics of tethered mem- example for bifurcation phenomena and the paradigm for
branes. The present work is devoted to the study of the buclsubsequent theories of phase transitiph]. Still, the dy-
ling dynamics of tethered membranes outlined before brieflynamics of this phenomenon has been addressed in depth only
in Ref.[11]. Here we address the question of flae-from-  recently, for the case of tethered membraftel, and flex-
equilibrium buckling dynamics of such membranéthin  ible chains of moleculefl9]. In itself, buckling involves a
elastic sheejsmoving in a viscous medium. Mechanical in- spontaneous symmetry breaking. Thus, a compressed mem-
stabilities of elastic manifolds pose a rich spectrum of prob-brane may buckle either up or dowbreaking ofZ,, Ising-
lems that are still largely unresolved despite great efforttype symmetry. Therefore, buckling is a practically interest-
Classical examples are buckling instabilities of thin sheet$ng analog of the phase ordering phenomena. In this paper,
[12], which are of great importance in safety design andwe address extensively the fundamentals of buckling dynam-
development of energy absorbing structuf&3]. There are ics, that is, we studyow initially compressed membranes
large varieties of phenomena involving deformations of thinreach the final buckled configuration at long times. We elu-
elastic sheetsmembranes These, potentially, span a wide cidate deep relationships of the membrane buckling dynam-
range of scales, from phospholipid membrafe§ and thin ics to phase ordering procesg@9-22, such as the mound
sheets of graphite oxide in aqueous suspensj@hso the  growth recently observed in molecular beam epitfXg—
raglike structures found in molybdenum disulpHit&] and  25]. We find that membrane buckling dynamics can be envi-
spectrin skeleton of red blood cell membrafieg]. A good  sioned as a phase ordering process in which membrane slope
example is the buckling instability of polymerized monolay- plays the role of the order parameter. We show that mem-
ers of insoluble amphiphiles adsorbed at the air-water interbrane buckling dynamics forms a distinct class of the phase
face, studied by Bordieet al, and more recently by Saint- ordering processes characterized by a scaling behavior not
Jalmes and Gallef17]. Buckling of a membrane can be found before in other coarsening phenomg2@-25. Mem-
induced in a variety of ways, for example, simply by apply- brane transverse displacements develop a wavelike pattern in
ing a compressional lateral strain. Another related class ofwo dimensions with a wavelength that grows, via a coars-
phenomena is the buckling due to internal strains, whickening process, as a power of time. Evolving membranes are
plays an important role in heteroepitaxial growth, such aslike growing surfaceg‘growing interfaces”) whose trans-
for example, the growth of SiGe multilayers on Si substratewverse width grows as a power of time. The morphology of
[18]. evolving membranes is characterized by the presence of a
In practice, strains causing buckling are frequently ofnetwork of growing ridges where the elastic energy is mostly
thermal origin [18]. Membranes immersed in fluids may concentrated. We used this fact to develop a scaling theory
buckle if the temperature of the fluid is raised and the boundef the buckling dynamics that gives analytic estimates of the
coarsening exponents.
The balance of our paper is as follows. We discuss the
*Permanent address: Physics Department, West Virginia Univermodel for the tethered membrane in Sec. Il. In Sec. lll, our
sity, Morgantown, WV 26506. molecular-dynamicg§MD) simulations results for the mem-
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brane buckling dynamics are presented. A scaling theory of
the buckling dynamics based on the evidence of the exis-
tence of high energy concentration regions, “ridges,” across
the surface of the membrane is proposed in Sec. IV. We
conclude in Sec. V where we summarize our findings and
possible future directions of investigation. In the Appendix,
we generalize the scaling analysis of Sec. IV to discuss the
effects of long range viscous forces on membrane buckling
dynamics(so-called Zimm dynamigs

Il. THE MODEL

A tethered membrane is a system of particles connected tc £
form a triangular two-dimensiondPD) mesh embedded in :
three dimensions. Each patrticle is labeled by an internal dis-
crete coordinatex=(xy,X,) denoting its position on the
mesh. Its actual position in the 3D space is given by the
three-dimensional vector(x;,X,). The particles are ar-
ranged in a triangular array, interacting with their nearest
neighbors by a simple Gaussian spring potential. The mem-
brane’s bending energy is modeled by a ferromagneticlike
interaction between the normals to the nearest-neighbor 4
“plaquettes” [10]. Thus, the net elastic potential energy of €
the membrane reads

t=18000

U= 3(IF—Tol=ro®+x > (1-fi,-fig), (D
(xx") (aB)

) o FIG. 1. Snapshot of the evolving membrane at tirtre2000,
wherex andx’ label the nodes andy= 1.0 is the equilibrium  gog0, and 18 000. The membrane is initially in thg plane. The
bond (“spring” ) length (as usual(xx’) signifies the bond membrane configurations are being viewed from two perspectives:
between nearest neighborsindx’). The subscriptecand  along thez axis, the left column that depicts the whole membrane,
label the neighboring face¢riangles of the surfacefi, is  and along a direction making an angle with thaxis in order to
the unit normal vector to the faeg « is the bending rigidity, magnify a 6% selection taken from the midsection of the whole
and{ap) signifies the nearest-neighbor plaquettes. membrane(the right columi. The left column perspective makes

We have studied membranes that are hexagonal in shapesible only molecular displacements parallel to thg plane.
of linear dimensions up t =500 (L is the number of par- i .
ticles on the largest diagonalthat contain up to 186751 rally, the frame Imear size is 10%'smaller than that of a fully
particles(see Fig. 1 To minimize the finite size effects, we relaxed membranewith Z€10 elas_:tlc energy We focus here
have done all the calculatiorispatial averagesof physical 0" the membrane dynamics without thermal ndiseero-
quantities on a subset of the large membrane. The subset @mperature” dynamigs i.e., we setz,(t)=0 in Eq. (2).
used to calculate the spatial averages was a hexagonal regidft® Only randomness used here was small initial random
of size L,,=250 (a subset withN=45019 particles cen- transverse displacements around initially compressed and,

tered in the middle of the large membrane. therefore, unstable flat configurations of the membr(gunst
to enable the membrane to start moying

Figure 1 shows snapshots of configurations that display
the time evolution of theN=186 751 particle membrane at
timest= 2000, 6000, and 18 000. Each configuration is being

Here we report the results of large-scale molecularviewed from two perspectives; along thexis for the whole
dynamics simulations of tethered membranes, initially in amembrane(the left-hand column and along a direction
precompressed statsee Fig. 1L The dynamical model stud- making an angle with the axis, to magnify a smaller mem-
ied here by MD is the standard overdamped Rouse dynanirane portior(the right-hand column The membrane is ini-

IIl. MOLECULAR-DYNAMICS SIMULATIONS
OF MEMBRANE BUCKLING DYNAMICS

ics, tially in the x-y plane. As can be seen from Fig. 1, buckling
instability, due to negative internal strains, amplifies trans-
dry o dU . verse displacements and produces a chaotic dynamics. Mani-
Yt aT*X (1), 2) festly, membrane transverse displacementfs,t), along

the z axis, develop an evolving wavelike patternrabunds
of the tethered membrane. Heffg(t) is the position of the characterized by a growing lateral length sce{¢) (“wave-
particle at timet,y is the viscous friction coefficient, and length”). Notably, membrane morphology is characterized
7x(t) is thermal noise. The membrane is initially in a flat by the presence of a network of highly curved regiaitdges
configuration with all its bonds compressed by(e.g., & that bound more flat regions, mouffacetswith linear size
=0.1 for the simulations discussed hem@nd with fixed ~N\(t). Associated with the growth of the mound lateral size
boundary(“frame” ) of hexagonal shapésee Fig. 1 Natu-  \(t) is a growth of the membrane’s transverse spreét)
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FIG. 3. The membrane transverse wigifit) versus timew(t)

FIG. 2. The height-height correlation functioks(r,t) versus  measures the height of the mounds comprising the membrane pro-
r for four values of the timé=2000, 6000, 10 000, and 18 000. The file. The log-log plot gives the scaling(t)~t°2°
inset shows the collapse of the correlation functions into a single
curve y=i(x). Here y=Ku(r,t)/Kp(r=01t) and x=r/\(t), r
wherel(t) is the first zero oK, (r,t). Khh(l’,t)=W2(t)¢( W) (5)
(“width” ) along thez axis (see Fig. 1 w(t) can be thought , i ) L.
of as the typical height of a mound. We quantify it asWhere ¢(s) is a scaling function satisfying/(0)=1 and
[W(t)]2=(r(x,t)—(r1)]?). Here and in the following()  #(1)=0 _ _
stands for spatial average, defined for any quadity,t) as As w and\ correspond, respectively, to the typical mound
(A(X,1)) =2 A(X,1)/N height and mound lateral size, the ratid\ corresponds to

7 X ’ "

In order to quantitatively characterize the surface mor-N€ average mound slope. Due to the fact that the two expo-

phology, we have calculated, apart from the membrane widtf€NtsB andn. are essentially equal, we see that the average

w(t), the height-height correlation function: 20 -

Kin(F 1) = (r(DEH(X+1,1), 3) MO

wherer 1(x,t) =r(x,t) —(rq) is the relative transverse dis- 15 4
placement with respect to the average height of the mem-
brane(in these simulationér1)~0 at all timeg. This corre-
lation function (see Fig. 2 has an oscillatory character T
reflecting wavelike membrane patterns in Fig. 1. We used the
height-height correlation function to find the membrane
wavelength(mound lateral size\ (t), by identifying it with )
the position of the first zero crossing Kf,(r,t), see Fig. 2 14
[19-25. We thus find that the membrane transverse width §
w(t) and wavelength (t) both grow as powers of time, 53y

o

oot
Lo < q028

w(t)~t8, A(t)~t", (4) ] t

1000 10000

with the exponentg=0.29+0.01 andn.=0.28+0.01. This 0 4000 8000 12000 16000 20000

is documented in Figs. 3 and 4, which show the width and

wavelength as functions of time, on both linear and logarith- t

mic scales. Moreover, as documented in the inset to Fig. 2, g, 4. The time evolution of the first zero of the height-height
he'ght-he'ght COI‘re|atI0n funCtIOI’]S Obta'ned at d|fferentcorre|ati0n functiorKhh(r’t), Ca”ed)\(t), the “Wave|ength” of the
times collapse into a single scaling functige- #/(s); here  membrane wavelike patteri(t) measures the lateral size of the
y=Kpn(r,1)/Kpn(r=0) =Kpp(r,t)/w?, —and s=r/\(t).  mounds comprising the membrane profile. The log-log plot gives
Thus, at long times, the scalingh (t) ~t%28
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FIG. 5. The time relaxation of the averageomponent of the

normal unit vector to the surface of the membréng. The log-log FIG. 6. The time evolution of membrane elastic potential ener-
plot gives the scaling[(n,)(t)—(n)(t=%)]~t"%%° [where gies(PE): total potential energy) = Uyengt Ucom, bending energy
(n,)(t==)=0.810. Upengs @nd compressional ener@.,n, per particle versus time.

slope of the mounds stabilizes to a constant value at long

times. To rationalize this, consider the average value ofthe Uconlt)~ t? (8)
component of the unit normal vector to the surfage,).

From simple geometrical considerations, we have the followwith &’ =0.47+0.01, whereas

ing estimate:
1
U t ~ 9
(n >_AA0_ ro(1—e)? rg(l—s)z_(:L 2 bend 1) o 9)
77 Ay 1A . 7 =(1-e)%

with §"=0.45+0.01, see Fig. 6. Numerically, the scaling
6) exponentss’ and " are nearly equal. We note that the ratio
. ] . ~ Upend/Ucom IS about 5 at the longest time of the simulation.
whereA,, is the area of an equilateral triangle plaquette inThe total elastic potential energy(t) = Upendt) + U conlt)

the initial (t=0) horizontal position with all the bonds pre- decays with an exponent close &~5'. This is docu-
compressed by, whereasA, is the area of the same mented in Fig. 6, where we find

plaquette tilted at time& when the bond length i§(t). At

long times,|(t) approaches, (the relaxed bond lengttand 1
the mound slopev(t)/\ (t)~y1—(n,)?/(n,) stabilizes to a U(t)~ o (10
value determined by the externally imposed strairfEqua-
tion (6) yields with 6=0.46+0.01.
w(t) IV. SCALING THEORY

N(b) - \/; (7 OF MEMBRANE BUCKLING DYNAMICS

In this section we propose a scaling theory of membrane
for e<1. Figure 5 from our simulations shows the time evo-buckling dynamics. It is similar in spirit to Bray's recent
lution of (n,). We can see that indeed it stabilizes at longscaling theory of coarsening processes such as spinodal de-
times at the valuén,)(t=)=0.810. In fact, this value is in composition[20—22. This approach relates the dynamics of
perfect agreement with Eg@6), with e=0.1, as used in our the coarsening processes in dissipative systems to the rate of
simulations. From our simulations we fifidn,)(t) —(n,)(t  extinction of energy rich regions, such as domain walls in
=m)]~t¢ with {=—0.50+0.01 (see Fig. 5. Ising ferromagnets. Such energy rich configurations, similar

We obtain additional insight into the membrane scalingto domain walls, are present also in our case, in the form of
behavior by considering the decay of the elastic potentiaklliptically shaped ridges of length(t) which bound more
energy, see Fig. 6. The net elastic enelthis the sum of the  flat regions, facets with area\?(t), as noted in Sec. IIl.
compressional energy .om [the first term on the right-hand This is further documented in Fig. 7 from our simulations,
side of Eq.(1)] and the bending energyenq [the second which depicts bending energy density distribution over the
term on the right-hand side of E(l)]. We see that at long surface of the membrane at time 6000 for a small portion
times, (50x50) of the membrane. Notably, the elastic energy is
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implied by the equation of motio(®). In terms of the energy
per particleu=U/N, Eq. (16) reads

1du or\ 2 .

yat \la) /[ 17
By using Eq.(17) with u~t~?, anddr/at~w/t~tf~1 we
obtain the scaling relation °~1~t>#~1) je,,

- 1.00

L oso i, , s+1=2(1-p). (18)

025 Finally, as the mound slopg(t)/\(t) saturates to a constant
value at long times, one hasv(t)~\(t), i.e.,tP~t", and,
L 0.00 thus,
B=n.. (19

Equations(15), (18), and(19) form the basic set of scaling
relations in our analysis. By using them, we can express the
scaling indicesB, n., and ¢ in terms of a single scaling
index v. By combining Eqgs(15), (18), and (19), we thus

FIG. 7. The elastic bending energy density for a small portion of
the membrane (5050) at time t=6000. Here, TUpend X)
=Upend X)/ (Upend max, Where Upend max 1S the maximum value of
the local bending energy density, i.e., bending energy per particl
UpendX). Notably, the elastic energy is localized in elliptically
shaped ridgegbright regiong, whereas larger dark areas are nearly »
flat facets characterized by low elastic energy density. 5=—— (Rouse dynamigs (20)

localized into a relatively small portion of the membrane
area occupied by a network of elliptically shaped ridges of
length \(t) (see Fig. 7. A “unit cell” of this random net- 1
work has the area\?(t) coinciding with the typical area of B=n.=—— (Rouse dynamigs (21
a facet. 4—v

As there is of the order one ridge per area ’(t), the  Equations(20) and (21) are the fundamental results of our
average elastic energy per particle, i.e., energy per unit are8caling analysis. Withv=1, as suggested ifi26,27, our
IS equations(20) and (21) yield

nd

Urigge( M) (11) 6=5=045 B=n,=2=0.27 (Rouse dynamigs
—Z (22

whereU qd(\) is the energy of a single ridge of length  in good agreement with our simulation results of Sec. Ill.
For ridges of deformed membranes, it has been recently sug- Rouse dynamics does not incorporate the long range ef-
gested that fects of hydrodynamic backflows of fluid media on moving
membranes, so-called Zimm effe¢®28]. These effects can
Uriggd N) ~ N7, (120 be readily included into our scaling analysis. We find for the

) N Zimm dynamics,
with v=3 [26,27]. Thus, by Eq(11),

2_
B 1 13 o= ST: (Zimm dynamic$ (23
)\2— v

and
So, the decay of the elastic energy density from simulations

in Fig. 7, withu~t~?, is related to the growth of(t) by Eq. 1 . _
(13). Asu~t~?, we find, by Eq.(13), B=nc=z—, (Zimm dynamics. (24)
A~ the, (14 The derivation of Eqs(23) and(24) is presented in the Ap-
with pendix. Withv»=3 [26], we thus have
s 8=3, B=n.=3 (Zimm dynamics. (25)
n.= . (15 . . ) )
2—v Overall, the analysis of this section shows that basic fea-

o . tures of the buckling dynamics can be understood by invok-
To proceed further, we use the energy dissipation relation ing energetics of ridges and applying a scaling approach
Lo similar to that used to describe the phase ordering in mag-
E d_U — E (ﬂ) (16) netic system$22]. Our analysis shows that the buckling dy-
y dt =1\ dt)’ namics constitutes a new class of coarsening phenomena ex-
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hibiting novel scaling behavior characterized by exponentsvavelengthA(t) at long times. Such a study of adsorbed
[such as those in Eq$22) and (25)] not found before in  membranes would be relevant for understanding dynamical
magnetic systems or elsewhdg@0—-25. aspects of the buckling of polymerized surfactant monolay-
ers adsorbed at fluid interfaces, investigated in recent experi-
ments[17]. Other possible extensions of the present work
V. CONCLUSIONS could be to study the dynamics of buckling with external

In summary, here we have studied the fundamentals of thifiction mechanism present. Indeed, though many applica-
membrane buckling dynamics, that is, how an initially flattions deal with membranes embedded in fluid media, it
membrane under external strain imposed by fixed boundarig¥ould also be interesting to study buckling dynamics in the
reaches the equilibrium buckled configuration at long times@PSence of any external friction, e.g., the Hamiltonian buck-
We find that evolving membranes develop growing wavelike!i"d dynamics of the membrane, or phenomenological mod-
patterns. We have revealed here that the dynamics of bucg!S incorporatinginternal friction mechanismg30], which
ling is similar in nature to phase ordering processes such 482 be more relevant for the buckling of thin sheets in air.
spinodal decomposition. Membrane buckling dynamics is Finally, various other modes of applying the buckling
analogous to phase ordering processes such as the growth$§fin may be investigated. Our present study dealt with
ordered domains in magnetic systems below the critical tem'€Mbranes evolving under a constant external strain im-
perature. Membranes develop nearly flat growing domain§0S€d by keeping the boundaries of the membrane fixed
(facets whose slope plays a role similar to that of an order(fixed frame. The membrane is thus initially under a uni-
parameter in phase ordering processes. Membranes evol{RfM compressive strain that relaxes during the subsequent
via a stochastic coarsening process that has associated wittPKCkling dynamics. A natural extension of the present study
power law growth of length scales that characterize thdS to investigate the case with initially relaxed membranes

evolving membrane. We find that the coarsening exponentdnder an external strain which is gradually increaed, the
for the transverse membrane widi(t)~t# and for the frame size is decreasedo the final value. The resulting

length scale of the facets(t)~t" are nearly equal. Such a membrane behavior will certainly depend on how the exter-

growth ofw(t), with 8=n., is strikingly similar to the in- nal strain is increased and extensive future studies should
[ — ey . . . .

terfacial coarsening process recently found to occur in mo2ddress many different possible ways of loading the buckling

lecular beam epitaxyso-called pyramidal or mound growth Strain-
[23-25). The morphology of the evolving membranes is
characterized by the presence of a network of growing ridges
where the elastic energy is mostly localized. We used this
fact to develop a scaling theory of the buckling dynamics We thank Andrew Karwowski, Arnoud Saint-Jalmes,
that gives analytic estimates of the coarsening exponent€harles Knobler, and James P. Sethna for discussions. This
These estimates are in good agreement with our simulatiowork was supported by Mylan Laboratories, Inc. and by
results. Finally, our results show that the membrane bucklingNSF/WV EPSCoR. The simulations were performed on the
dynamics constitutes a new class of coarsening phenomer@M-5 parallel computer at West Virginia University.
characterized by novel scaling behaviors, such as those in
Egs. (22) and (25), not found in magnetic systems or else-
where[20-25. APPENDIX

We end by stressing some features of the present study

and anticipating directions for future studies. First of all, we

) . V to discuss the effects of long range viscous forces on the
emphasize that the stochastic nature of the membrane buck- . . ; .
- . . ; . ; membrane buckling dynamics. For this purpose we consider
ling dynamics discussed in this work is not due to thermal

noise, which was, in fact, switched off in the simulations & M°"€ general membrane dynamics of the form
presented here. In fact, interestingly, the stochasticity is pro-

ACKNOWLEDGMENTS

In this appendix we generalize the scaling analysis of Sec.

duced dynamically by the nonlinear nature of the system and PPr(x,1) L IF (X', 1) ouU
by the presence of many degrees of freedom. Similar dy- mT:_Z y(x=x") ot )
namical stochasticity occurs in phase ordering processes, X ’ (A1)

e.g., in spinodal decomposition in time-dependent Ginzburg-
Landau modeld22]. Moreover, in these systems, thermal
noise was found to be typically irrelevant for the coarseningHere m is the mass of a membrane molecule, whereas the
process, i.e., the presence of a white noise does not affefitst term on the right-hand side of E¢A1) is a nonlocal
coarsening exponents, suchrgs It would be interesting to  viscous force. Fom=0 and y(x—x')= vy, EQ. (Al)
investigate if this remains true in the membrane case alspeduces to the standard Rouse dynamics disccussed in previ-
(especially in view of the anomalous membrane elasticityous sections. Here we discuss the effects of a long ranged
revealed by Nelson and Pelj®]). Another extension of the viscous kernely(x—x'), decaying as a power law for large
present study would be to investigate buckling dynamics ofx—x’|. By multiplying Eq.(A1) by or(x,t)/dt=v(x,t) and
membranes adsorbed at fluid interfaces. These systems a@mming ovei, one obtains the energy dissipation equation
generalizations of those discussed here. For adsorbed mem-
branes, in addition to Zimm effectSec. IV and Appendix

one must include membrane spontaneous curvature as well

d
as hydrostatic forces that yield a saturation of the membrane aitK V1= ~Pass (A2)
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whereK =3 (m/2)v?(x,t) is the total kinetic energy of the (o) ~|al?, (A10)
membraney is the elastic potential energy of the membrane

given by Eq.(1), and P4 is the power dissipated by the Wherea is a positive exponent. Of physical interest are the
viscous friction, cases(i) Rouse dynamics, for whick=0 andy(r)~ 6, o,

and (ii) Zimm dynamics, for whichw=1, see Refs[28,29.

, , By using Eqs(A7) and(A9) with 5 as in Eq.(A10), it is

Paiss= +§ 2 VX=X WVOGDV(X D). (A3) st}r/aight?orv?ard to show that e )
XV

2
By Egs. (A2) and (A3), for a large membrane dfl mol- Paic= consM(w) ia (A11)
ecules, one has t) A

d For the buckling dynamics wittv~t# and\ ~t", we find,
gr LK ul=~Paiss, (A4) by Eq.(A11),

. —t—2(1-B)—nca
where k=K/N=(m/2)(v2(x,t)) and u=U/N are, respec- Paisd 1) ~t ' (A12)
tively, kinetic and potential energy per membrane moleculefor the relaxation of dissipation power on the right-hand side
whereaspy;ss signifies the viscous friction power per mol- of Eq. (A4). The left-hand side of Eq(A4), (d/dt)(k+u),

ecule, must decay with the same power law as in E§l12). As in
P Sec. lll, we write down the decay of the elastic energy in the
__ diss_ form u~t~°. The decay of the kinetic ener oes as
R PKy(T). (A5) y 9y 9
Pass™ N Z DK k= (m/2)(v?) = (m/2){(arlat)2) = (m/2) (w/t)2~t~2(1=A),

Here Let us assume thai<2(1— ). Then, at long times,

d d o
Koy (N = (x+r)v(x)) (AB) a(|<+u)~au~t o- 1 (A13)

is the velocity correlation functiormpyss in EQ. (A5) can be By Egs.(A13), (A12), and (A4), we thus obtain the scaling
represented as relation , , |

d’q - —2(1—
Peiss= f ﬁmv(qry(q), (A7) o+1=2(1=p)*nea, (A14)
which reduces to Eq(18) of Sec. IV for the case of the
where we introduce the Fourier transform, defined in theRouse dynamicsd=0). Equation(Al4) can be combined
usual way (i.e., for any quantity A(x) we have with the equation®i.=g, andé=n.(2—») of Sec. IV[see

A(g)=3,A(x)e @, A(x)=(1/N)Eqﬂ(q)eiqxzf[d2q/ Egs.(19) and(15)] to obtain

(2m)2]JA(q)€'?). In the spirit of Eq.(5) of Sec. Ill, we 1
consider the velocity correlation function of the form L — (A15)
r
Kun(1)= KW(O)f(X), (Ag)  and
2—v
f(s) is a scaling functior f(0)=1]. Here K,,(0)=(v?) il w— (A16)
=((ar/at)®)~(wlt)?, as in Sec. IV. In terms of Fourier _
transform, one easily finds, by E€A8), For the casex=0, the exponents in Eq$A15) and (A16)
reduce to the scaling exponents for the Rouse dynamics we
~ o[ W 2 found in Sec. IV[see Eqs(20)—(22)]. For a=1, the expo-
Kuw(a)=A T f(an). (A9) nents in Eqs(A15) and(A16) reduce to the Zimm dynamics

exponents anticipated in EqR23)—(25) of Sec. IV. For both
To proceed further, we consider the viscous friction kernelof these values ofa, the above presumed inequali§

v(r) whose Fourier transform has a power law form <2(1-p) (i.e.,u>k at long time$ is satisfied.
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